
UNIT – I
Embedded System Introduction

UNIT - I: Embedded System Introduction: Contents

1. Embedded systems overview
2. Design challenges
3. Processor technology
4. IC technology
5. Design Technology5. Design Technology
6. Trade-offs
:Single purpose processors RT-level
1. Combinational logic
2. Sequential logic (RT level)
3. Custom single purpose processor design(RT – level)
4. Optimizing custom single purpose processors.

11/15/2024 2Lakireddy Bali Reddy College of Engineering

Introduction

• Computing systems are everywhere
• Most of us think of “desktop” computers

– PC’s
– Laptops– Laptops
– Mainframes
– Servers

• But there’s another type of computing system
– Far more common...

11/15/2024 3Lakireddy Bali Reddy College of Engineering

Embedded systems overview

• Embedded computing systems
– Computing systems embedded

within electronic devices
– Hard to define. Nearly any

computing system other than a

Computers are in here...

and here...

and even here...

computing system other than a
desktop computer

– Billions of units produced yearly,
versus millions of desktop units

– Perhaps 50 per household and
per automobile

Lots more of these,
though they cost a lot
less each.

11/15/2024 4Lakireddy Bali Reddy College of Engineering

A “short list” of embedded
systems

Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems
Battery chargers
Camcorders
Cell phones
Cell-phone base stations
Cordless phones
Cruise control
Curbside check-in systems

Modems
MPEG decoders
Network cards
Network switches/routers
On-board navigation
Pagers
Photocopiers
Point-of-sale systems
Portable video games
Printers
Satellite phones
Scanners
Smart ovens/dishwashers

And the list goes on and on

Curbside check-in systems
Digital cameras
Disk drives
Electronic card readers
Electronic instruments
Electronic toys/games
Factory control
Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions
Temperature controllers
Theft tracking systems
TV set-top boxes
VCR’s, DVD players
Video game consoles
Video phones
Washers and dryers

11/15/2024 5Lakireddy Bali Reddy College of Engineering

Some common characteristics
of embedded systems

• Single-functioned
– Executes a single program, repeatedly

• Tightly-constrained
– Low cost, low power, small, fast, etc.– Low cost, low power, small, fast, etc.

• Reactive and real-time
– Continually reacts to changes in the system’s

environment
– Must compute certain results in real-time without

delay

11/15/2024 6Lakireddy Bali Reddy College of Engineering

1. Embedded systems overview

Definition: An Embedded System (ES) is a
system where Micro-controller or micro-
processor based programmable system is
embedded into a large system.embedded into a large system.

The points which are connected are called
sphere of control. (Red & Green points).

11/15/2024 8Lakireddy Bali Reddy College of Engineering

11/15/2024 9Lakireddy Bali Reddy College of Engineering

11/15/2024 10Lakireddy Bali Reddy College of Engineering

11/15/2024 11Lakireddy Bali Reddy College of Engineering

General purpose system
Vs

Embedded system

General purpose system Embedded system

Multi-purpose applications Single purpose / single application or
predefined application

High cost Tightly constrained.High cost
High power

Tightly constrained.
. Low cost
.Low power
.portable
. Some times real time

11/15/2024 12Lakireddy Bali Reddy College of Engineering

Real time system(RTS)
Vs

Embedded system (ES)

• RTS: 1. Hard RTS. 2. Soft RTS.
1. Hard RTS:
. it has stringent time constraint.
. If it violates controlling takes place. . If it violates controlling takes place.
2. Soft RTS:
. If it violates QoS is reduced.
All RTS are ESs but all ESs are not RTS.
(ES s are RTS are not RTS)

11/15/2024 13Lakireddy Bali Reddy College of Engineering

Reactive system
vs

Transformational system
. Reactive system : React to an event.
Exp: camera reacts by clicking a button.

. Transformational system: sequence of . Transformational system: sequence of
transformations has to be applied.

Exp: Image processing
. Segmentation .noise removal etc..

11/15/2024 14Lakireddy Bali Reddy College of Engineering

An embedded system example –
a digital camera

Microcontroller

CCD preprocessor Pixel coprocessor
A2D

D2A

JPEG codec Multiplier/Accum

Digital camera chip

lens

CCD

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

• Single-functioned -- always a digital camera
• Tightly-constrained -- Low cost, low power, small, fast
• Reactive and real-time -- only to a small extent

11/15/2024 15Lakireddy Bali Reddy College of Engineering

2. Design challenge –
optimizing design metrics

• Obvious design goal:
– Construct an implementation with desired functionality

• Key design challenge:
– Simultaneously optimize numerous design metrics– Simultaneously optimize numerous design metrics

• Design metric
– A measurable feature of a system’s implementation
– Optimizing design metrics is a key challenge

11/15/2024 16Lakireddy Bali Reddy College of Engineering

Design challenge – optimizing
design metrics

• Common metrics
– Unit cost: The monetary cost of manufacturing each copy of the system,

excluding NRE cost

– NRE cost (Non-Recurring Engineering cost): The one-
time monetary cost of designing the system
NRE cost (Non-Recurring Engineering cost):
time monetary cost of designing the system

– Size: The physical space required by the system

– Performance: The execution time or throughput of the system

– Power: The amount of power consumed by the system

– Flexibility: The ability to change the functionality of the system without
incurring heavy NRE cost

11/15/2024 17Lakireddy Bali Reddy College of Engineering

Design challenge – optimizing
design metrics

• Common metrics (continued)
– Time-to-prototype: the time needed to build a working version of

the system

– Time-to-market: the time required to develop a system to the point
that it can be released and sold to customers
Time-to-market:
that it can be released and sold to customers

– Maintainability: the ability to modify the system after its initial
release

– Correctness, safety, many more

11/15/2024 18Lakireddy Bali Reddy College of Engineering

• Performance: Latency & Throughput
Latency: Time to take a task / operation.
Exp:
Let camera A & B both takes 0.25 sec to take a Let camera A & B both takes 0.25 sec to take a

picture. (It is the Latency).
Camera A give 4 pic/sec
Camera B give 8 pic/sec (2 parallel processing units)

: Camera B has more Throughput.

11/15/2024 19Lakireddy Bali Reddy College of Engineering

Design metric competition -- improving one
may worsen others

• Expertise with both
software and hardware is
needed to optimize design
metrics
– Not just a hardware or

software expert, as is common

SizePerformance

Power

software expert, as is common
– A designer must be

comfortable with various
technologies in order to
choose the best for a given
application and constraints

NRE cost

Microcontroller

CCD preprocessor Pixel coprocessorA2D D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital camera chip

lens

CCD

Hardware
Software

11/15/2024 20Lakireddy Bali Reddy College of Engineering

Time-to-market: a demanding design
metric

• Time required to develop a
product to the point it can
be sold to customers

• Market window
– Period during which the – Period during which the

product would have highest
sales

• Average time-to-market
constraint is about 8
months

• Delays can be costly

Re
ve

nu
es

 ($
)

Time (months)

11/15/2024 21Lakireddy Bali Reddy College of Engineering

Losses due to delayed market
entry

• Simplified revenue model
– Product life = 2W, peak at W
– Time of market entry defines a

triangle, representing market
penetration

Peak revenue

Peak revenue from
delayed entry

Market rise Market fall

On-time

Re
ve

nu
es

 ($
)

penetration
– Triangle area equals revenue

• Loss
– The difference between the

on-time and delayed triangle
areas

On-time Delayed
entry entry

Market rise Market fall

W 2W

Time

D

DelayedRe
ve

nu
es

 ($
)

11/15/2024 22Lakireddy Bali Reddy College of Engineering

Losses due to delayed market
entry (cont.)

• Area = 1/2 * base * height
– On-time = 1/2 * 2W * W
– Delayed = 1/2 * (W-D+W)*(W-D)

• Percentage revenue loss =
(D(3W-D)/2W2)*100%

Peak revenue

Peak revenue from
delayed entry

Market rise Market fall

On-time

Re
ve

nu
es

 ($
)

(D(3W-D)/2W2)*100%
• Try some examples

On-time Delayed
entry entry

Market rise Market fall

W 2W

Time

D

DelayedRe
ve

nu
es

 ($
)

– Lifetime 2W=52 wks, delay D=4 wks
– (4*(3*26 –4)/2*26^2) = 22%
– Lifetime 2W=52 wks, delay D=10 wks
– (10*(3*26 –10)/2*26^2) = 50%
– Delays are costly!

11/15/2024 23Lakireddy Bali Reddy College of Engineering

NRE and unit cost metrics
• Costs:

– Unit cost: the monetary cost of manufacturing each copy of the system,
excluding NRE cost

– NRE cost (Non-Recurring Engineering cost): The one-time monetary cost of
designing the system

– total cost = NRE cost + unit cost * # of units
– per-product cost = total cost / # of units

= (NRE cost / # of units) + unit cost
per-product cost = total cost / # of units

= (NRE cost / # of units) + unit cost

• Example
– NRE=$2000, unit=$100
– For 10 units

– total cost = $2000 + 10*$100 = $3000
– per-product cost = $2000/10 + $100 = $300

Amortizing NRE cost over the units results in an
additional $200 per unit

11/15/2024 24Lakireddy Bali Reddy College of Engineering

NRE and unit cost metrics

$200,000
A

$200
A

• Compare technologies by costs -- best depends on quantity
– Technology A: NRE=$2,000, unit=$100
– Technology B: NRE=$30,000, unit=$30
– Technology C: NRE=$100,000, unit=$2

$0

$40,000

$80,000

$120,000

$160,000

0 800 1600 2400

B

C

$0

$40

$80

$120

$160

0 800 1600 2400

Number of units (volume)

B

C

Number of units (volume)

to
ta

l c
o

st
 (

x1
0

0
0)

p
e

r
p

ro
d

u
c

t
c

o
st

• But, must also consider time-to-market

11/15/2024 25Lakireddy Bali Reddy College of Engineering

The performance design metric

• Widely-used measure of system, widely-abused
– Clock frequency, instructions per second – not good measures
– Digital camera example – a user cares about how fast it processes images, not

clock speed or instructions per second

• Latency (response time)
– Time between task start and end– Time between task start and end
– e.g., Camera’s A and B process images in 0.25 seconds

• Throughput
– Tasks per second, e.g. Camera A processes 4 images per second
– Throughput can be more than latency seems to imply due to concurrency, e.g.

Camera B may process 8 images per second (by capturing a new image while
previous image is being stored).

• Speedup of B over S = B’s performance / A’s performance
– Throughput speedup = 8/4 = 2

11/15/2024 26Lakireddy Bali Reddy College of Engineering

Three key embedded system
technologies

• Technology
– A manner of accomplishing a task, especially using

technical processes, methods or knowledge

• Three key technologies for embedded systems• Three key technologies for embedded systems
– Processor technology
– IC technology
– Design technology

11/15/2024 27Lakireddy Bali Reddy College of Engineering

3. PROCESSORS

• 1. General purpose

• 2. Application Specific• 2. Application Specific

• 3. Single Purpose

11/15/2024 28Lakireddy Bali Reddy College of Engineering

Processor technology

11/15/2024 29Lakireddy Bali Reddy College of Engineering

Processor technology
• Processors vary in their customization for the problem at hand

total = 0
for i = 1 to N loop

total += M[i]
end loop

Desired
functionality

General-purpose
processor

Single-purpose
processor

Application-specific
processor

functionality

11/15/2024 30Lakireddy Bali Reddy College of Engineering

Processor

11/15/2024 31Lakireddy Bali Reddy College of Engineering

Processor technology
• The architecture of the computation engine used to implement

a system’s desired functionality
• Processor does not have to be programmable

– “Processor” not equal to general-purpose processor

Registers

DatapathController

Control logic

DatapathController

Control index
Register

DatapathController

Control

Application-specific

Registers

Custom
ALU

Program
memory
Assembly code
for:

total = 0
for i =1 to …

Control logic
and State
register

Data
memory

IR PC

Single-purpose (“hardware”)

Control
logic

State
register

Data
memory

index

total

+

IR PC

Register
file

General
ALU

Program
memory
Assembly code
for:

total = 0
for i =1 to …

Control
logic and
State
register

Data
memory

General-purpose (“software”)

11/15/2024 32Lakireddy Bali Reddy College of Engineering

Instruction execution cycle

• An instruction is FETCH from Memory through • An instruction is FETCH from Memory through
IR.

11/15/2024 33Lakireddy Bali Reddy College of Engineering

• Data path: Registers, Wires, MUX, data
elements…

• Control Path: FSM. • Control Path: FSM.
sending the control signals to different

elements of the data path.
Controlling is either H/W or S/W.

11/15/2024 34Lakireddy Bali Reddy College of Engineering

General-purpose processors
• Programmable device used in a variety of

applications
– Also known as “microprocessor”

• Features
– Program memory
– General datapath with large register file and IR PC

Register
file

General
ALU

DatapathController

Control
logic and
State
register

– General datapath with large register file and
general ALU

• User benefits
– Low time-to-market and NRE costs
– High flexibility

• “Pentium” the most well-known, but
there are hundreds of others

IR PC ALU

Program
memory

Assembly code
for:

total = 0
for i =1 to …

Data
memory

11/15/2024 35Lakireddy Bali Reddy College of Engineering

Single-purpose processors
• Digital circuit designed to execute exactly

one program
– a.k.a. coprocessor, accelerator or peripheral

• Features
– Contains only the components needed to

DatapathController

Control
logic

State
register

index

total

+

– Contains only the components needed to
execute a single program

– No program memory

• Benefits
– Fast
– Low power
– Small size

Data
memory

11/15/2024 36Lakireddy Bali Reddy College of Engineering

Application-specific processors

• Programmable processor optimized for a
particular class of applications having
common characteristics
– Compromise between general-purpose and

single-purpose processors

• Features IR PC

Registers

Custom
ALU

DatapathController

Control
logic and
State
register

• Features
– Program memory
– Optimized datapath
– Special functional units

• Benefits
– Some flexibility, good performance, size and

power

Program
memory

Assembly code
for:

total = 0
for i =1 to …

Data
memory

11/15/2024 37Lakireddy Bali Reddy College of Engineering

5. IC technology
• The manner in which a digital (gate-level) implementation is

mapped onto an IC
– IC: Integrated circuit, or “chip”
– IC technologies differ in their customization to a design
– IC’s consist of numerous layers (perhaps 10 or more)– IC’s consist of numerous layers (perhaps 10 or more)

. IC technologies differ with respect to who builds
each layer and when

source drainchannel
oxide
gate

Silicon substrate

IC package IC

11/15/2024 38Lakireddy Bali Reddy College of Engineering

IC technology

• Three types of IC technologies
– Full-custom/VLSI
– Semi-custom ASIC (gate array and standard cell)
– PLD (Programmable Logic Device)– PLD (Programmable Logic Device)

11/15/2024 39Lakireddy Bali Reddy College of Engineering

Full-custom/VLSI

• All layers are optimized for an embedded
system’s particular digital implementation
– Placing transistors
– Sizing transistors

Routing wires– Routing wires
• Benefits

– Excellent performance, small size, low power
• Drawbacks

– High NRE cost (e.g., $300k), long time-to-market

11/15/2024 40Lakireddy Bali Reddy College of Engineering

Semi-custom

• Lower layers are fully or partially built
– Designers are left with routing of wires and maybe

placing some blocks
• Benefits• Benefits

– Good performance, good size, less NRE cost than a
full-custom implementation (perhaps $10k to
$100k)

• Drawbacks
– Still require weeks to months to develop

11/15/2024 41Lakireddy Bali Reddy College of Engineering

PLD (Programmable Logic
Device)

• All layers already exist
– Designers can purchase an IC
– Connections on the IC are either created or destroyed to

implement desired functionality
– Field-Programmable Gate Array (FPGA) very popular– Field-Programmable Gate Array (FPGA) very popular

• Benefits
– Low NRE costs, almost instant IC availability

• Drawbacks
– Bigger, expensive (perhaps $30 per unit), power hungry,

slower

11/15/2024 42Lakireddy Bali Reddy College of Engineering

Moore’s law
• The most important trend in embedded systems

– Predicted in 1965 by Intel co-founder Gordon Moore
IC transistor capacity has doubled roughly every 18 months for the past several decades

10,00010,000

1,000

100

10

1

0.1

0.01

0.001

Logic transistors
per chip
(in millions)

Note: logarithmic
scale

11/15/2024 43Lakireddy Bali Reddy College of Engineering

Moore’s law
• Wow

– This growth rate is hard to imagine, most people
underestimate

– How many ancestors do you have from 20 generations
ago

• i.e., roughly how many people alive in the 1500’s did it take to
make you?

• i.e., roughly how many people alive in the 1500’s did it take to
make you?

• 220 = more than 1 million people
– (This underestimation is the key to pyramid schemes!)

11/15/2024 44Lakireddy Bali Reddy College of Engineering

Graphical illustration of
Moore’s law

1981 1984 1987 1990 1993 1996 1999 2002

Leading edge

10,000
transistors

Leading edge

150,000,000
transistors

Leading edge
chip in 1981

Leading edge
chip in 2002

• Something that doubles frequently grows more quickly
than most people realize!
– A 2002 chip can hold about 15,000 1981 chips inside itself

11/15/2024 45Lakireddy Bali Reddy College of Engineering

Graphical illustration of
Moore’s law

1981 1984 1987 1990 1993 1996 1999 2002

Leading edge

10,000
transistors

Leading edge

150,000,000
transistors

Leading edge
chip in 1981

Leading edge
chip in 2002

• Something that doubles frequently grows more quickly
than most people realize!
– A 2002 chip can hold about 15,000 1981 chips inside itself

11/15/2024 46Lakireddy Bali Reddy College of Engineering

Design Technology

• Design technology involves the manner in
which we convert our concept of desired
system functionality into an implementation.

• We must not only design the implementation • We must not only design the implementation
to optimize design metrics, but we must do so
quickly.

• To understand how to improve the design
process, we must first understand the design
process.

11/15/2024 Lakireddy Bali Reddy College of Engineering 47

11/15/2024 Lakireddy Bali Reddy College of Engineering 48

Compilation/Synthesis

• designer specify desired functionality in an
abstract manner, and automatically generates
lower-level implementation details.

• A logic synthesis tool converts Boolean
expressions into a connection of logic gates(called expressions into a connection of logic gates(called
a netlist).

• A register-transfer (RT) synthesis tool converts
finite-state machines and register-transfers into a
datapath of RT components and a controller of
Boolean equations.

11/15/2024 Lakireddy Bali Reddy College of Engineering 49

• A behavioral synthesis tool converts a sequential
program into finite-state machines and register
transfers.

• a software compiler converts a sequential
program to assembly code, which is essentially
register-transfer code.

• a system synthesis tool converts an abstract
system specification into a set of sequential
programs on general and single-purpose programs on general and single-purpose
processors.

• The choice of hardware versus software for a
particular function is simply a tradeoff among
various design metrics, like performance, power,
size, NRE cost, and especially flexibility

11/15/2024 Lakireddy Bali Reddy College of Engineering 50

Libraries/IP

• Libraries involve re-use of pre-existing
implementations.

• Using libraries of existing implementations can
improve productivity if the time it takes to find,
acquire, integrate and test a library item is lessacquire, integrate and test a library item is less
than that of designing the item oneself.

• A logic-level library may consist of layouts for gates
and cells. An RT-level library may consist of layouts
for RT components, like registers, multiplexors,
decoders, and functional units.

11/15/2024 Lakireddy Bali Reddy College of Engineering 51

• A behavioral-level library may consist of
commonly used components, such as
compression components, bus interfaces,
display controllers, and even general-purpose
processors.

• a system-level library might consist of
complete systems solving particular problems, complete systems solving particular problems,
such as an interconnection of processors with
accompanying operating systems and
programs to implement an interface to the
Internet over an Ethernet network.

11/15/2024 Lakireddy Bali Reddy College of Engineering 52

Test/Verification

• Test/Verification involves ensuring that
functionality is correct.

• Such assurance can prevent time-consuming
debugging at low abstraction levels and debugging at low abstraction levels and
iterating back to high abstraction levels.

• Simulation is the most common method of
testing for correct functionality, although
more formal verification techniques are
growing in popularity.

11/15/2024 Lakireddy Bali Reddy College of Engineering 53

• At the logic level, gate level simulators provide
output signal timing waveforms given input
signal waveforms.

• At the RT-level, hardware description
language (HDL) simulators execute RT-level
descriptions and provide output waveforms
given input waveforms.given input waveforms.

• At the behavioral level, HDL simulators
simulate sequential programs, and co-
simulators connect HDL and general-purpose
processor simulators to enable
hardware/software co-verification.

11/15/2024 Lakireddy Bali Reddy College of Engineering 54

• At the system level, a model simulator
simulates the initial system specification using
an abstract computation model, independent
of any processor technology, to verify
correctness and completeness of the
specification.

• Model checkers can also verify certain• Model checkers can also verify certain
properties of the specification, such as
ensuring that certain simultaneous conditions
never occur, or that the system does not
deadlock.

11/15/2024 Lakireddy Bali Reddy College of Engineering 55

Design productivity
exponential increase

100,000

10,000

1,000

100

10

Pr
od

uc
tiv

ity
(K

) T
ra

ns
./

St
af

f –
M

o.

• Exponential increase over the past few decades

1

0.1

0.01

19
83

19
87

19
89

19
91

19
93

19
85

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

Pr
od

uc
tiv

ity
(K

) T
ra

ns
./

St
af

f

11/15/2024 56Lakireddy Bali Reddy College of Engineering

The co-design ladder
• In the past:

– Hardware and software
design technologies were
very different

– Recent maturation of
synthesis enables a unified

Assembly instructions
Register transfers

Compilers
(1960's,1970's)

Assemblers, linkers
(1950's, 1960's)

Behavioral synthesis
(1990's)

RT synthesis
(1980's, 1990's)

Logic equations / FSM's

Sequential program code (e.g., C, VHDL)

synthesis enables a unified
view of hardware and
software

• Hardware/software
“codesign” Implementation

Machine instructions

(1950's, 1960's)
Logic synthesis
(1970's, 1980's)

Microprocessor plus
program bits: “software”

VLSI, ASIC, or PLD
implementation: “hardware”

Logic gates

Logic equations / FSM's

The choice of hardware versus software for a particular function is simply a tradeoff among various
design metrics, like performance, power, size, NRE cost, and especially flexibility; there is no
fundamental difference between what hardware or software can implement.

11/15/2024 57Lakireddy Bali Reddy College of Engineering

Independence of processor
and IC technologies

• Basic tradeoff
– General vs. custom
– With respect to processor technology or IC technology
– The two technologies are independent

General- Single-General-
purpose
processor

ASIP
Single-
purpose
processor

Semi-customPLD Full-custom

General,
providing improved:

Customized,
providing improved:

Power efficiency
Performance
Size
Cost (high volume)

Flexibility
Maintainability
NRE cost
Time- to-prototype
Time-to-market
Cost (low volume)

11/15/2024 58Lakireddy Bali Reddy College of Engineering

Design productivity gap
• While designer productivity has grown at an impressive rate

over the past decades, the rate of improvement has not kept
pace with chip capacity

10,000

1,000

100,000

10,0001,000

100

10

1

0.1

0.01

0.001

Logic transistors
per chip
(in millions)

10,000

1000

100

10

1

0.1

0.01

Productivity
(K) Trans./Staff-Mo.IC capacity

productivity

Gap

11/15/2024 59Lakireddy Bali Reddy College of Engineering

Design productivity gap
• 1981 leading edge chip required 100 designer months

– 10,000 transistors / 100 transistors/month

• 2002 leading edge chip requires 30,000 designer months
– 150,000,000 / 5000 transistors/month

• Designer cost increase from $1M to $300M

10,000

1,000
100

10

1
0.1

0.01

0.001

Logic transistors
per chip
(in millions)

100,000

10,000
1000
100

10
1

0.1

0.01

Productivity
(K) Trans./Staff-Mo.

IC capacity

productivity

Gap

11/15/2024 60Lakireddy Bali Reddy College of Engineering

The mythical man-month
• The situation is even worse than the productivity gap indicates
• In theory, adding designers to team reduces project completion time
• In reality, productivity per designer decreases due to complexities of team management

and communication
• In the software community, known as “the mythical man-month” (Brooks 1975)
• At some point, can actually lengthen project completion time! (“Too many cooks”)• At some point, can actually lengthen project completion time! (“Too many cooks”)

10 20 30 400

10000
20000
30000
40000
50000
60000

43

24

19
16 15 16

18

23

Team

Individual

Months until completion

Number of designers

• 1M transistors, 1
designer=5000 trans/month

• Each additional designer
reduces for 100 trans/month

• So 2 designers produce 4900
trans/month each

11/15/2024 61Lakireddy Bali Reddy College of Engineering

Summary

• Embedded systems are everywhere
• Key challenge: optimization of design metrics

– Design metrics compete with one another

• A unified view of hardware and software is necessary to
improve productivityimprove productivity

• Three key technologies
– Processor: general-purpose, application-specific, single-purpose
– IC: Full-custom, semi-custom, PLD
– Design: Compilation/synthesis, libraries/IP, test/verification

11/15/2024 62Lakireddy Bali Reddy College of Engineering

single-purpose processors:
Outline

• Introduction
• Combinational logic
• Sequential logic
• Custom single-purpose processor design• Custom single-purpose processor design
• RT-level custom single-purpose processor

design

11/15/2024 63Lakireddy Bali Reddy College of Engineering

Introduction
• Processor

– Digital circuit that performs a
computation tasks

– Controller and datapath
– General-purpose: variety of computation

tasks
– Single-purpose: one particular

computation task

CCD
preprocessor

Pixel coprocessor
A2D

D2A

Digital camera chip
CCD

computation task
– Custom single-purpose: non-standard

task
• A custom single-purpose

processor may be
– Fast, small, low power
– But, high NRE, longer time-to-market,

less flexible

MicrocontrollerJPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display
ctrl

Multiplier/Accum

lens

11/15/2024 64Lakireddy Bali Reddy College of Engineering

CMOS transistor on silicon
• Transistor

– The basic electrical component in digital systems
– Acts as an on/off switch
– Voltage at “gate” controls whether current flows from

source to drain
– Don’t confuse this “gate” with a logic gate– Don’t confuse this “gate” with a logic gate

source drain
oxide
gate

IC package IC
channel

Silicon substrate

gate

source

drain

Conducts
if gate=1

1

11/15/2024 65Lakireddy Bali Reddy College of Engineering

CMOS transistor
implementations

• Complementary Metal Oxide
Semiconductor

• We refer to logic levels
– Typically 0 is 0V, 1 is 5V

• Two basic CMOS types

gate

source

drain

nMOS

Conducts
if gate=1

gate

source

drain

pMOS

Conducts
if gate=0

• Two basic CMOS types
– nMOS conducts if gate=1
– pMOS conducts if gate=0
– Hence “complementary”

• Basic gates
– Inverter, NAND, NOR

x F = x'

1

inverter

0

F = (xy)'

x

1

x

y

y

NAND gate

0

1

F = (x+y)'

x y

x

y

NOR gate
0

11/15/2024 66Lakireddy Bali Reddy College of Engineering

Basic logic gates

F = x y
AND

F = x  y
XOR

F = x
Driver

F = x + y
OR

x F
F

x

y

x

y
FFy

xx
0

y
0

F
0

0 1 0
1 0 0
1 1 1

x
0

y
0

F
0

0 1 1
1 0 1
1 1 1

x
0

y
0

F
0

0 1 1
1 0 1
1 1 0

x F
0 0
1 1

F = (x y)’
NAND

F = x’
Inverter

x F

F = (x+y)’
NOR

x

y
F

x
y

F
x

y
F

F = x y
XNOR

x
0

y
0

F
1

0 1 0
1 0 0
1 1 1

x
0

y
0

F
1

0 1 1
1 0 1
1 1 0

x
0

y
0

F
1

0 1 0
1 0 0
1 1 0

x F
0 1
1 0

11/15/2024 67Lakireddy Bali Reddy College of Engineering

Combinational logic design
A) Problem description

y is 1 if a is to 1, or b and c are 1. z is 1 if b
or c is to 1, but not both, or if all are 1.

D) Minimized output equations

C) Output equations

y = a'bc + ab'c' + ab'c + abc' + abc

z = a'b'c + a'bc' + ab'c + abc' + abc

B) Truth table

1 0 1 1 1
1 1 0 1 1

0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0

00 0 0 0

Inputs
a b c

Outputs
y z

D) Minimized output equations

00
0

1

01 11 10
0

1

0 1 0

1 1 1

a
bcy

y = a + bc

00
0

1

01 11 10
0

0

1 0 1

1 1 1

z

z = ab + b’c + bc’

a
bc

1 1 0 1 1
1 1 1 1 1 E) Logic Gates

a
b
c

y

z

11/15/2024 68Lakireddy Bali Reddy College of Engineering

Combinational components

O = O0 =1 if I=0..00 sum = A+B less = 1 if A<B O = A op B

n-bit, m x 1
Multiplexor

O

…
S0

S(log m)

n

n

I(m-1) I1 I0

…

log n x n
Decoder

…

O1 O0O(n-1)

I0I(log n -1)
…

n-bit
Adder

n
A B

n

sumcarry

n-bit
Comparator

n n
A B

less equal greater

n bit,
m function

ALU

n n
A B

…
S0

S(log m)n

O

With enable input e 
all O’s are 0 if e=0

With carry-in input Ci
sum = A + B + Ci

May have status outputs
carry, zero, etc.

O =
I0 if S=0..00
I1 if S=0..01
…
I(m-1) if S=1..11

O0 =1 if I=0..00
O1 =1 if I=0..01
…
O(n-1) =1 if I=1..11

sum = A+B
(first n bits)

carry = (n+1)’th
bit of A+B

less = 1 if A<B
equal =1 if A=B
greater=1 if A>B

O = A op B
op determined
by S.

11/15/2024 69Lakireddy Bali Reddy College of Engineering

Sequential components

clear

n-bit
Register

n

n

load

I

Q

shift

I Q

n-bit
Shift register

n-bit
Counter
n

Q

Q =
0 if clear=1,
I if load=1 and clock=1,
Q(previous) otherwise.

Q =
0 if clear=1,
Q(prev)+1 if count=1 and clock=1.

Q Q

Q = lsb
- Content shifted
- I stored in msb

11/15/2024 70Lakireddy Bali Reddy College of Engineering

Sequential logic design
A) Problem Description

You want to construct a clock
divider. Slow down your pre-
existing clock so that you output a
1 for every four clock cycles

B) State Diagram

C) Implementation Model

Combinational logica x

I0

I1

Q1 Q0

D) State Table (Moore-type)

1 0 1 1 1

0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0

00 0 0 0

Inputs
Q1 Q0 a

Outputs
I1 I0

0

0

0

x

0

1 2

3

x=0

x=1x=0

x=0

a=1 a=1

a=1

a=1

a=0

a=0

a=0

a=0

B) State Diagram State register

I0I1

1 0 1 1 1
1 1 0 1 1
1 1 1 0 0 1

0

• Given this implementation model
– Sequential logic design quickly reduces to

combinational logic design

11/15/2024 71Lakireddy Bali Reddy College of Engineering

Sequential logic design (cont.)

00

1

Q1Q0I1

I1 = Q1’Q0a + Q1a’ +
Q1Q0’

0 1

1

1

010

00 11 10a 01

00 01 11 10I0 Q1Q0

E) Minimized Output Equations F) Combinational Logic

a

I1

x

0

0

0

1 0 1

1

00 01 11a

1

10I0

I0 = Q0a’ + Q0’a0

1

0 0

0

1

1

0

0

00 01 11 10

x = Q1Q0

x

0

1

0

a

Q1Q0

Q1 Q0

I0

I1

11/15/2024 72Lakireddy Bali Reddy College of Engineering

Custom single-purpose
processor basic model

controller datapath

…

external
control
inputs

…

external
data

inputs

datapath
control
inputs

… …

controller datapath

next-state
and

control
logic

registers

controller and datapath

…

external
control
outputs

…

external
data

outputs

datapath
control
outputs

a view inside the controller and datapath

… …

state
register

logic

functional
units

11/15/2024 73Lakireddy Bali Reddy College of Engineering

Example: greatest common
divisor

GCD

(a) black-box
view

x_i y_i

d_o

go_i

(b) desired functionality

1:

1

!1

x = x_i3:

y = y_i4:

2:

2-J:

!go_i

!(!go_i)
(c) state
diagram• First create algorithm

• Convert algorithm to
“complex” state machine
– Known as FSMD: finite-

state machine with
0: int x, y;
1: while (1) {
2: while (!go_i);
3: x = x_i;
4: y = y_i;
5: while (x != y) {
6: if (x < y)
7: y = y - x;

else
8: x = x - y;

}
9: d_o = x;

}

(b) desired functionality

y = y -x7: x = x - y8:

6-J:

x!=y

5: !(x!=y)

x<y !(x<y)

6:

5-J:

d_o = x

1-J:

9:

state machine with
datapath

– Can use templates to
perform such conversion

11/15/2024 74Lakireddy Bali Reddy College of Engineering

State diagram templates
Assignment statement

a = b
next
statement

Loop statement

while (cond) {
loop-body-
statements

}
next statement

Branch statement

if (c1)
c1 stmts

else if c2
c2 stmts

else
other stmts

next statement

a = b

next
statement

loop-body-
statements

cond

next
statement

!cond

J:

C:

next statement

c1

c2 stmts

!c1*c2 !c1*!c2

next
statement

othersc1 stmts

J:

C:

11/15/2024 75Lakireddy Bali Reddy College of Engineering

Creating the datapath
• Create a register for any

declared variable
• Create a functional unit for

each arithmetic operation
• Connect the ports, registers

and functional units

1:

1

!1

x = x_i3:

y = y_i4:

2:

2-J:

!go_i

!(!go_i)

x_i y_i

0: x 0: y

n-bit 2x1 n-bit 2x1
x_sel

y_sel

x_ld

y_ld

Datapath

and functional units
– Based on reads and writes
– Use multiplexors for multiple

sources

• Create unique identifier
– for each datapath component

control input and output

y = y -x7: x = x - y8:

6-J:

x!=y

5: !(x!=y)

x<y !(x<y)

6:

5-J:

d_o = x

1-J:

9:

subtractor subtractor

7: y-x8: x-y5: x!=y 6: x<y

d_o

9: d

x_neq_y

x_lt_y

d_ld

<

5: x!=y

!=

11/15/2024 76Lakireddy Bali Reddy College of Engineering

Creating the controller’s FSM

• Same structure as FSMD
• Replace complex

actions/conditions with
datapath configurations

1:

1

!1

x = x_i3:

y = y_i4:

2:

2-J:

!go_i

!(!go_i)

x_sel = 0
x_ld = 13:

y_sel = 0
y_ld = 14:

1:
1

!1

2:

2-J:

!go_i

!(!go_i)

go_i

0000

0001

0010

0011

0100

Controller

x_i y_i

y = y -x7: x = x - y8:

6-J:

x!=y

5: !(x!=y)

x<y !(x<y)

6:

5-J:

d_o = x

1-J:

9:

y_sel = 1
y_ld = 1

7: x_sel = 1
x_ld = 1

8:

6-J:

x_neq_y

5:
!x_neq_y

x_lt_y !x_lt_y

6:

5-J:

d_ld = 1

1-J:

9:

y_ld = 14:0100

0101

0110

0111 1000

1001

1010

1011

1100

subtractor subtractor

7: y-x8: x-y5: x!=y 6: x<y

d_o

0: x 0: y

9: d

n-bit 2x1 n-bit 2x1
x_sel

y_sel

x_ld

y_ld

x_neq_y

x_lt_y

d_ld

<

5: x!=y

!=

Datapath

11/15/2024 77Lakireddy Bali Reddy College of Engineering

Splitting into a controller and
datapath

x_sel = 0
x_ld = 13:

y_sel = 0
y_ld = 14:

1:
1

!1

2:

2-J:

!go_i

!(!go_i)

go_i

0000

0001

0010

0011

0100

ControllerController implementation model

y_sel

x_sel
Combinational

logic

go_i

x_neq_y

x_lt_y

x_ld

y_ld

d_ld

subtractor subtractor

x_i y_i

0: x 0: y

n-bit 2x1 n-bit 2x1
x_sel

y_sel
x_ld

y_ld

<!=

(b) Datapath

y_sel = 1
y_ld = 1

7: x_sel = 1
x_ld = 1

8:

6-J:

x_neq_y=1

5:
x_neq_y=0

x_lt_y=1 x_lt_y=0

6:

5-J:

d_ld = 1

1-J:

9:

y_ld = 1

0101

0110

0111 1000

1001

1010

1011

1100

Q3 Q0

State register

Q2 Q1

I3 I0I2 I1

subtractor subtractor

7: y-x8: x-y5: x!=y 6: x<y

d_o

9: d

x_neq_y

x_lt_y

d_ld

<

5: x!=y

!=

11/15/2024 78Lakireddy Bali Reddy College of Engineering

Controller state table for the
GCD example

Inputs Outputs

Q3 Q2 Q1 Q0 x_ne
q_y

x_lt_y go_i I3 I2 I1 I0 x_sel y_sel x_ld y_ld d_ld

0 0 0 0 * * * 0 0 0 1 X X 0 0 0

0 0 0 1 * * 0 0 0 1 0 X X 0 0 0

0 0 0 1 * * 1 0 0 1 1 X X 0 0 0

0 0 1 0 * * * 0 0 0 1 X X 0 0 0

0 0 1 1 * * * 0 1 0 0 0 X 1 0 0

0 1 0 0 * * * 0 1 0 1 X 0 0 1 0

0 1 0 1 0 * * 1 0 1 1 X X 0 0 00 1 0 1 0 * * 1 0 1 1 X X 0 0 0

0 1 0 1 1 * * 0 1 1 0 X X 0 0 0

0 1 1 0 * 0 * 1 0 0 0 X X 0 0 0

0 1 1 0 * 1 * 0 1 1 1 X X 0 0 0

0 1 1 1 * * * 1 0 0 1 X 1 0 1 0

1 0 0 0 * * * 1 0 0 1 1 X 1 0 0

1 0 0 1 * * * 1 0 1 0 X X 0 0 0

1 0 1 0 * * * 0 1 0 1 X X 0 0 0

1 0 1 1 * * * 1 1 0 0 X X 0 0 1

1 1 0 0 * * * 0 0 0 0 X X 0 0 0

1 1 0 1 * * * 0 0 0 0 X X 0 0 0

1 1 1 0 * * * 0 0 0 0 X X 0 0 0

1 1 1 1 * * * 0 0 0 0 X X 0 0 0

11/15/2024 79Lakireddy Bali Reddy College of Engineering

• We often start with a state
machine
– Rather than algorithm
– Cycle timing often too central

to functionality

• Example

RT-level custom single-purpose
processor design

Pr
ob

le
m

 S
pe

ci
fic

at
io

n

Bridge
A single-purpose processor that

converts two 4-bit inputs, arriving one
at a time over data_in along with a

rdy_in pulse, into one 8-bit output on
data_out along with a rdy_out pulse.

Sende
r

data_in(4)

rdy_in rdy_out

data_out(8)

Rece
iver

clock

rdy_in=0 rdy_in=1Bridge• Example
– Bus bridge that converts 4-bit

bus to 8-bit bus
– Start with FSMD
– Known as register-transfer

(RT) level
– Exercise: complete the design

FS
M

D

WaitFirst4 RecFirst4Start
data_lo=data_in

WaitSecond4

rdy_in=1

rdy_in=0

RecFirst4End

rdy_in=1

RecSecond4Start
data_hi=data_in

RecSecond4End

rdy_in=1rdy_in=0

rdy_in=1

rdy_in=0

Send8Start
data_out=data_hi

& data_lo
rdy_out=1

Send8End
rdy_out=0

Bridge

rdy_in=0
Inputs
rdy_in: bit; data_in: bit[4];

Outputs
rdy_out: bit; data_out:bit[8]

Variables
data_lo, data_hi: bit[4];

11/15/2024 80Lakireddy Bali Reddy College of Engineering

RT-level custom single-purpose
processor design (cont’)

WaitFirst4 RecFirst4Start
data_lo_ld=1

WaitSecond4

rdy_in=1
rdy_in=0

RecFirst4End

rdy_in=1

RecSecond4Start
data_hi_ld=1

RecSecond4End

rdy_in=1rdy_in=0
rdy_in=1

rdy_in=0

(a) Controller
Bridge

Send8Start
data_out_ld=1

rdy_out=1

Send8End
rdy_out=0

rdy_in rdy_ou
t

data_lodata_hi

data_in(4)

(b) Datapath
data_outda

ta
_o

ut
_l

d
da

ta
_h

i_
ld

da
ta

_l
o_

ld

clk

to
 a

ll
re

gi
st

er
s

data_out

11/15/2024 81Lakireddy Bali Reddy College of Engineering

Optimizing single-purpose
processors

• Optimization is the task of making design
metric values the best possible

• Optimization opportunities
– original program– original program
– FSMD
– datapath
– FSM

11/15/2024 82Lakireddy Bali Reddy College of Engineering

Optimizing the original
program

• Analyze program attributes and look for areas
of possible improvement
– number of computations
– size of variable– size of variable
– time and space complexity
– operations used

• multiplication and division very expensive

11/15/2024 83Lakireddy Bali Reddy College of Engineering

Optimizing the original
program (cont’)

0: int x, y;
1: while (1) {
2: while (!go_i);
3: x = x_i;
4: y = y_i;
5: while (x != y) {
6: if (x < y)
7: y = y - x;

else
8: x = x - y;

0: int x, y, r;
1: while (1) {
2: while (!go_i);

// x must be the larger number
3: if (x_i >= y_i) {
4: x=x_i;
5: y=y_i;

}
6: else {
7: x=y_i;

original program optimized program

replace the subtraction
operation(s) with modulo

operation in order to speed
up program

8: x = x - y;
}

9: d_o = x;
}

7: x=y_i;
8: y=x_i;

}
9: while (y != 0) {

10: r = x % y;
11: x = y;
12: y = r;

}
13: d_o = x;

}

up program

GCD(42, 8) - 9 iterations to complete the loop
x and y values evaluated as follows : (42, 8), (43, 8),
(26,8), (18,8), (10, 8), (2,8), (2,6), (2,4), (2,2).

GCD(42,8) - 3 iterations to complete the loop
x and y values evaluated as follows: (42, 8), (8,2),
(2,0)

11/15/2024 84Lakireddy Bali Reddy College of Engineering

Optimizing the FSMD

• Areas of possible improvements
– merge states

• states with constants on transitions can be eliminated,
transition taken is already knowntransition taken is already known

• states with independent operations can be merged

– separate states
• states which require complex operations (a*b*c*d) can

be broken into smaller states to reduce hardware size

– scheduling

11/15/2024 85Lakireddy Bali Reddy College of Engineering

Optimizing the FSMD

• Areas of possible improvements
– merge states

• states with constants on transitions can be eliminated,
transition taken is already knowntransition taken is already known

• states with independent operations can be merged

– separate states
• states which require complex operations (a*b*c*d) can

be broken into smaller states to reduce hardware size

– scheduling

11/15/2024 86Lakireddy Bali Reddy College of Engineering

Optimizing the FSMD (cont.)

int x, y;

2:
go_i !go_i

x = x_i
y = y_i

x<y x>y

y = y -x x = x - y

3:

5:

7: 8:

1:

1

!1

x = x_i

y = y_i4:

2:

2-J:

!go_i

!(!go_i)

int x, y;

3:

original FSMD optimized FSMD

eliminate state 1 – transitions have constant values

merge state 2 and state 2J – no loop operation in
between them

merge state 3 and state 4 – assignment operations are
independent of one another y = y -x x = x - y7: 8:

d_o = x9:

y = y -x7: x = x - y8:

6-J:

x!=y

5: !(x!=y)

x<y !(x<y)

6:

5-J:

d_o = x

1-J:

9:

independent of one another

merge state 5 and state 6 – transitions from state 6 can
be done in state 5

eliminate state 5J and 6J – transitions from each state
can be done from state 7 and state 8, respectively

eliminate state 1-J – transition from state 1-J can be
done directly from state 9

11/15/2024 87Lakireddy Bali Reddy College of Engineering

Optimizing the datapath

• Sharing of functional units
– one-to-one mapping, as done previously, is not

necessary
– if same operation occurs in different states, they – if same operation occurs in different states, they

can share a single functional unit

• Multi-functional units
– ALUs support a variety of operations, it can be

shared among operations occurring in different
states

11/15/2024 88Lakireddy Bali Reddy College of Engineering

Optimizing the FSM

• State encoding
– task of assigning a unique bit pattern to each state in

an FSM
– size of state register and combinational logic vary– size of state register and combinational logic vary
– can be treated as an ordering problem

• State minimization
– task of merging equivalent states into a single state

• state equivalent if for all possible input combinations the
two states generate the same outputs and transitions to the
next same state

11/15/2024 89Lakireddy Bali Reddy College of Engineering

Summary

• Custom single-purpose processors
– Straightforward design techniques
– Can be built to execute algorithms
– Typically start with FSMD– Typically start with FSMD
– CAD tools can be of great assistance

11/15/2024 90Lakireddy Bali Reddy College of Engineering

Thank you...

